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An eigenexpansion solution of the time-independent Brownian motion Fokker~ 
Planck equation is given for a situation in which the external acceleration is a 
step function. The solution describes the heavy-species velocity distribution 
function in a binary mixture undergoing a shock wave, in the limit of high 
dilution of the heavy species and negligible width of the light-gas internal shock. 
The diffusion solution is part of the eigenexpansion. The coefficients of the series 
of eigenfunctions are obtained analytically with transcendentally small errors of 
order exp(-1/M),  where M<~ 1 is the mass ratio. Comparison is made with 
results from a hypersonic approximation. 

KEY WORDS: Fokker-Planck equation; shock wave; Brownian motion; 
eigentheory. 

1. I N T R O D U C T I O N  

The evolution of heavy molecules diluted in a host light gas can be 
described at the kinetic level by the same Fokker-Planck (FP) equation 
governing the Brownian motion of particles. Although this equation has its 
origin in the theory of stochastic processes, 2 it also applies to the heavy 
molecules in a binary mixture and can be derived from the Boltzmann 
equation of the heavy gas (which is assumed very dilute, so that heavy- 
heavy collisions may be neglected) by expanding the cross-collision integral 
in powers of the molecular mass ratio M (M= m/mp ~ 1, where m is the 

t Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520- 
2159. 

2 See, for instance, the compilation of review papers edited by Wax ~t~ and the work of 
Kramers, (2~ or the derivation given in the textbook of R6sibois and De Lecher/3) Extensions 
of the FP equation to a nonequilibrium host gas, from the stochastic point of view, were 
made by Mazo ~4) and Slinn and Shen. 15) 
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molecular weight and the subscript p stands for the heavy species or par- 
ticles). This expansion was carried out by Wang Chang and Uhlenbeck (6) 
for the case when the light gas is in equilibrium, and extended to a non- 
equilibrium host gas by Fernandez de la Mora et al. (7'8) 

When the difference between the species mean velocity is small com- 
pared with the light-gas sound speed, the FP equation for the heavy-species 
velocity distribution function f(u,  x, t) reads (v) 

Otf + l l . V f  ='c- lVu �9 [ ( l l - W )  f +  (kT/mp) V . f ]  (1) 

where k is Boltzmann's constant, T(x, t) is the light-gas temperature, and 
W(x, t) is given by 

W = U +  Dc~rVln T (2) 

while U(x, t) is the light-gas velocity, ~r  is the thermal diffusion ratio, (9) 
and D is the binary diffusion coefficient, related to the relaxation time 
entering into Eq. (1) by Einstein's law: 

"c = mpD/kT (3) 

The driving force W/r due to the motion of the light gas plays here the 
same role as the external acceleration arising in the theory of stochastic 
processes.(1) 

In the particular case in which W is a constant, the solution of Eq. (1) 
for stationary problems can be expressed as an eigenexpansion, (1~ 
must be completed by adding a so-called diffusion solution, (12"2'13 18) since, 
in general, the system of eigenfunctions is not complete. (14) However, in 
most cases, due to the peculiar form of the boundary conditions, the coef- 
ficients of the eigenexpansion have to be calculated by complicated 
numerical algorithms. (13'1s'~9 21) For  instance, in the case of an absorbing 
boundary at x = 0, f ( x  = 0 ) =  0 for ux > 0. Since the orthogonality proper- 
ties of the eigenfunctions are in general extended to all the values of u x 
( - oe < ux < + oe ), they cannot be used to determine the coefficients in the 
eigenexpansion. 3 The same difficulty arises for perfectly reflecting and 
mixed boundaries. The numerical task of obtaining these coefficients by 
such methods is then enormous, since a very large number of eigen- 
functions is needed to reach a reasonably good precision, particularly near 

3 Half-range orthogonality properties with a weight function similar to the Chandrasekhar H 
function for the neutron transport problem have been proposed to obtain these 
coetficients. (22) However, no such weight function has been found, to our knowledge, for any 
problem involving the Fokker-Planck equation. 
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the boundaries (15) (sufficiently far from the boundaries, the diffusion 
solution is, in most cases, a good approximation to the exact solution). 

In the present paper, we give an analytic "almost exact" solution [with 
an error of order e x p ( -  l/M), M ~  1] 4 of Eq. (1) in a situation in which 
W, T, and r change discontinuously at x = 0, taking constant values in the 
intervals - oe < x < 0 and 0 < x < + oe. Physically, the problem models a 
situation in which the light gas undergoes a normal shock of zero thickness 
and the heavy species is highly diluted (np/n ,~ 1, where n and np a r e  the 
number densities of the light and heavy species, respectively). The 
eigenexpansion coefficients are obtained analytically via orthogonality 
properties {within the error O [ e x p ( - l / M ) ]  }, while the diffusion solution 
is contained in the eigenexpansion. 

In addition to its mathematical interest, the present work yields a 
nearly exact kinetic description of the far-from-equilibrium behavior of dis- 
parate-mass mixtures in a regime where they are of considerable industrial 
importance. Our results thus yield a standard against which other 
approximate theories may be tested, as we show in Section 3 for the hyper- 
sonic method of closure of the hydrodynamic equations. (23-25) 

2. SOLUTION OF THE FOKKER-PLANCK EQUATION 
FOR THE SHOCK WAVE PROBLEM 

Consider the one-dimensional steady flow of a disparate-mass binary 
mixture with supersonic velocity Uo and temperature To. By self-collisions, 
the light gas is decelerated to a velocity U and its temperature increases to 
a value T in a distance which, roughly, is m/mp times shorter than that 
needed by the heavy gas to equilibrate with the light gas by cross-collisions. 
Therefore, the light-gas shock wave may be considered, in first 
approximation in the mass ratio m/mp, as a discontinuity occurring at 
x = 0. Moreover, since np/n is very small, the post-shock values of the light- 
gas velocity and temperature U and T are assumed constants through the 
relaxation zone x > 0 (see, e.g., Fig. 1). Thus, the Fokker-Planck equation 
(1) for the heavy-gas velocity distribution functions f - ( x < 0 )  and 
f + ( x > 0 )  can be written as 

%u x Ox f -  = V , - [ ( u -  Uoex) f -  + (kTo/mp)Vuf -] ,  x < 0  (4) 

ZUx Oxf + =V~.  [ ( u -  Uex) f  + + (kT/mp)Vuf+],  x > 0  (5) 

where ex is the unit vector in the x direction and the relaxation times z and 

4For He-Ar  mixtures (M =0 .1 ) ,  e x p ( - 1 / M ) = 4 . 5 4 x 1 0 - ~ ;  for He-Xe (M=0.031) ,  
exp( - I/M) = 9.78 x 10 -15. 
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ro are given by Eq. (3) evaluated at post-shock and pre-shock conditions, 
respectively. U and Uo, and T and To, are connected through the Rankine- 
Hugoniot conditions 

U/Uo = EM~(y - 1 ) + 2]/(7 + 1 ) MR (6) 

TIT  o = 1 + 2(7 -- I)(M~ - l ) ( y i ~  + 1)/(y + 1) 2 M 2 (7) 

where ? (=5/3)  is the specific heat ratio of the light gas and Mt is the 
Mach number based on the upstream light gas conditions: 

M~ = U~/(?kTo/m) (8) 

The boundary conditions for Eqs. (4) and (5) are 

f -  = npo(mp/2ukTo) 3/2 exp[ - (mp/2kTo) [u - Uoex] 2], 

f +  = npoo(mp/2gkT) 3/2 e x p [ - ( m p / 2 k T )  tu-  Uexl2], 

as x ~  - o o  

(9) 

as x ~  +oo 

(10) 

(11) 

where 

V = U/(2kT/mp) 1/2 (16) 

f - ( x = O ) = f + ( x = O )  

that is, as x ~  - o o  and x ~  + ~ , f  a n d f  + are Maxwellian distributions 
with number densities, mean velocities, and temperatures npo, U o, T O and 
npoo, U, T, respectively. (The number densities are related to the mean 
velocity through the continuity equation npo Uo = np~ U). 

It is convenient to write Eqs. (4) and (5) in polar cylindrical coor- 
dinates in velocity space with polar axis directed along ex. On using the 
dimensionless variables 

+ = ux/( 2k T/mp) 1/2 (12) 

/,]+ = (i/2..~ 2 1/2 1/2 . u:) / (2kT/mp)  (13) 

y + = x/~(2kT/mp)1/2 (14) 

for x > 0, and similarly ~ , r/ , and y -  with To and ro instead of T and 
for x < 0 ,  Eqs. (4) and (5) become 

4 + Of+~@ + = ( 4  + _ V ) S f + / 8 r  + +tl + 3f+/Otl + + 3 f  + 
1 ~2 + ~ + 2  q.-~[ ' f  / q-632f+/c3rl+2-f-(~f+/c?rl+)/rl +] (15)  
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and similarly for x < 0 but with 4 - ,  r/-,  f , y , and 

Vo = Uo/(2kTo/mp) 1/2 (17) 

instead of 4 +, t/+, f + ,  y+,  and V. [Notice that Vo is a large number of 
order M -1/2 since Uo> (TkTo/m)l/2.] 

Equation (15) and its counterpart for x < 0  can be separated. Since 
both equations are completely similar, we will only consider the equation 
for x > 0 ,  dropping the superscr ipt+for  the moment. Defining the 
functions H(4) and L(z) (where z---r/2) as 

f(~,  ~l, Y) = H(4) L(z) exp[ - (4 - V -  7/2) 2 - z - 7Y] 

with y an arbitrary constant [not to be confused with the ratio of specific 
heats in Eqs. (6)-(8)] ,  after substituting into Eq. (15), these functions 
satisfy the ordinary differential equations 

6 ' " - 2 ( 4 -  V - , / ) H ' +  D(~ + 2 V ) - 2 C ]  H = 0  (18) 

zL" + (1 - z) L' + (C/2) L = 0 (19) 

where C and 7 are separation constants. By choosing 

C = 2 m ,  m = 0 ,  1, 2 .... 

7 ( 7 + 2 V ) - 2 C = 2 n ,  n = 0 ,  1, 2,... 
(20) 

we have that Eqs. (18) and (19) become Hermite and Laguerre equations 
of order n and m, respectively. (26) Hence the solution of Eq. (15) for x >  0 
may be written as the expansion 

f +  = ~ a+mHn(4 + V -  + +2 - ~. ,~)  L m ( ,  ) 
nm 

x e x p [ -  (4 + - V -  " Y + / 2 ) 2  - q + 2  - -7nm.Y+ + ] 

+Y~ b2r. ~r.(4 + - v -  72m) Lm(,1 +2) 
llm 

x exp[ - (4 + - V -  7,m/2) 2 -- t/+2 _ Y2m Y+ ] (21) 

where H,  and L m a r e  the Hermite and Laguerre polynomials of degree n 
and m; 7 +  is given [from Eq. (20)] by 

+ 7~-,~ = - V_  ( V 2 + 4rn + 2n) 1/2 (22) 
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and the coefficients a+m and b~ + are arbitrary constants. Similarly, 

where 

f -  = }-" a2mH~( ~ Vo _ o+ -- yn,n ) Lm[ (tl- ) 2] 
n m  

x e x p [ - ( 3 -  Vo o+ 2 2 , . o + . -  - 7~m/2) - (tt ] - -  ) - -  / n m Y  

+ 2 bnmHn(~ - Vo-~/~ 2] 
nm 

x e x p [ - ( ~ - - - V o - - y ~  ) 2 - 7 ~  - ] 

y~mO+ = _Vo  ++_ (V~o + 4m + 2n)i/2 

(23) 

(24) 

The two eigenfunctions corresponding to n = m = 0 can be identified 
with the equilibrium Maxwellians and with the so-called diffusion solution 
to Eqs. (4) and (5). This last function is the product of a Maxwellian and a 
function of the single variable x -  ~ux, and must be added to the system of 
eigenfunctions resulting from separating variables in order to make it 
complete. (12-14) The function ( x - ~ u x ) e x p ( - m p u 2 / 2 k T )  is the diffusion 
solution for the one-dimensional problem in a medium at rest. (15) For  the 
present case, the diffusion solution is not linear but exponential in the 
group x - r U x .  As a result, exceptionally, it is separable and is already 
included within the eigenexpansions as 

fd+ff=al exp[2V(y + - - 4 + ) ]  exp[ - -  (~ + - V ) 2 -  (/~+) 2] (25) 

fd~ff=A1 exp[2Vo(y - 3 - ) ]  e x p [ - ( ~ -  - Vo) 2 -  (r /-)  2] (26) 

where a~ and A~ are constants [notice the correspondence between these 
functions and the terms in Eqs. (21) and (23) whose constants are b& and 
boo, respectively]. 

Since the 7nm are negative constants, the coefficients b~,+m must be equal 
to zero in order for f § to be bound as y + ~ Go. A similar condition for f -  
as y ~ - o e  implies that all a2m = 0, except for aoo. From the boundary 
conditions (9) and (10), 

a~o = np~(mp/27ck T) 3/2 (27) 

%o = npo(mJ2~k To) 3/2 (28) 

The remaining constants + a .... n, m r 0, and bnm may be obtained by making 
use of the boundary condition (11) and the orthogonality properties of Hn 
and L m . 
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Instead of the orthogonality properties of the functions H, ,  it is 
advantageous to use those of the functions 

G+m(~) - exp[ - (4 - V -  7+,,,/2) 2 ] Hn(~ -- V-- Y+m) (29) 

O+ - -  V o +  2 G , , m ( ~ ) = e x p [ - ( ~ -  o - y n y / 2 )  ] H , ( ~ - V o  o+ - 7 . ,~  ) ( 3 0 )  

which are given in the Appendix. A consequence of the orthogonality 
properties of these functions G is that only the term a& in Eq. (21) and the 
term a& in Eq. (23) (corresponding to r + --zoo"~ = 0) contribute to the flow. 
Thus, substituting the expansions (21) and (23) into the condition (11), 
multiplying by ~/+~+ d~ + dr/+, and integrating over velocity space 
(between 0 and ~ for t /and between - co and + oo for ~), one obtains the 
continuity equation npO U 0 = r/pro U, where use has been made of Eqs. (27) 
and (28). On the other hand, multiplying by 

2r/+Lm(q +2) exp[(~ + - V) 2] ~ + a+m(r + ) de + d~/+ 

and integrating over velocity space, one gets 

where 

and 

An,~an+m = ~ Bnmob~7 + Cn,,,a & (31) 
ij  

A .... = 02 exp[(y+m)2/2] ( V +  7+m) ~ 2~n! (32) 

= 2 fo +~ dx xLm(x2/O) Lj(x 2) exp( - x  2) B,,,,, o 

x d x x e x p [ ( x / 0 1 / 2 _  V)2] Grim(x/O+ 1/2) GO_(x) (33) 
oo 

f o+ Ctz f + oo Cnm ~- 2 dx XLm( X2/O ) exp( - x  2 )  d x  
oo 

x x exp[(x/O 1/2 - V) 2 ] G+,,,(x/O 1/2) exp[ - ( x  - Vo) 2 ] (34) 

o=T/ro (35) 

Similarly, multiplying Eq. (11 ) by 

2 r I - L m [ ( q - )  2] exp[ (~-  -- Vo) 2] ~-G~ (~ - ) d~-  dr/- 
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and integrating over velocity space, we have 

where 

D~mbnm = E Enmklak+l (36) 
k l  

D,,m = 0 -2 exp[(70m )2/2] (Vo + 7~ ~ 2"n! (37) 

fo +:~ E,,mkl = 2 dx xL~(x20) Ll(x 2 ) e x p ( -  x 2) 

x dx x exp[(xO 1/2- V0) a ] G~ 1/2) G~(x )  (38) 
- -  o o  

To obtain the above expressions, use has been made of the properties given 
in the Appendix (notice that t / - =  01/2~/+ and ~-  = 0~/2~ +). 

The infinite system of algebraic equations (31) or (36) may be solved 
by successive approximations. For instance, one can make a guess for the 
coefficients b,7,, and use the equation [combination of (31) and (36)] 

(39) 

to obtain improved values of the coefficients b0, and so forth [notice that 
%; is known from Eq. (28)]. The coefficients a,+,, are then obtained from 
Eq. (31). Obviously, a reasonable first guess is b,, m = 0 since it implies that 
for x < 0 the distribution function is the Maxwellian 

f -  = aoo exp[ -- (~- -- Vo) 2 - 01 - )2] (40) 

that is, the exact distribution function as y -  -~ -co .  
The main difficulty of solving Eqs. (39) and (31) resides in the 

evaluation of the coefficients Bk~nm and E~jkt. Though analytical expressions 
in terms of finite sums can be found for them, (27 291 they are so complicated 
that their use in the expressions (39) and (31) becomes numerically imprac- 
ticable. However, the first guess by, ~= 0 is indeed a very good one. Its 
plausibility follows from the following arguments: apart from the term 
given by Eq. (40), the remaining members of the series (23) (notice that 
a2, ~ = 0  for n, m # 0) decay very rapidly to zero as y -  ~ -o% since all the 
constants o- 7n,~ appearing in the exponentials are very large negative num- 
bers (the smallest of them is ~~ = - 2 V  o of order M-1/2). Moreover, any 
hydrodynamic description of the problem will necessarily yield f -  exactly 
through Eq. (40) because the heavy gas is in hypersonic conditions for 
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x < 0  and does not "know" the presence of the light-gas shock until it 
reaches the discontinuity at x = 0. Accordingly, for x ~< 0 heavy and light 
species are in equilibrium at temperature To and velocity Uo. 

A quantitative estimate of the errors of this approximation by.,= 0 
may be obtained by inserting f -  of Eq. (40) a n d f  + given by the complete 
series (21) into the boundary condition (11) in order to determine the 

+ + resulting coefficients a,,~ and b,m. Using the orthogonality properties of the 
functions G and Eqs. (AS)-(A9) of the Appendix, in addition to the recur- 
sion formula for the Hermite polynomials, (26) we obtain 

a,+,,~2"n! ( v + ~,+m) 

= npo(mp/2rckT) 3/z exp[( Vo - V) 7+m 

+ (7,+m)2(0 -1 -- 3)/4] [(0 -- I)/0] "/z+m 

X { -- [0(0-- 1)3 -,/Z H.+  ,(s.~)/2 

+ [ 0 1 / 2 ( 0 - - 1 )  1/2Snm+V+Tn+m]gn(Snm)} (41) 

where the constants s ..... are 

S, ,m=[(Vo--V)  20+'/+m(1--20)][O(O--1)] 1/2/2 (42) 

+ with similar expressions for b ..... but with 7,,m instead of 7+m. From the 
equation for b,, +, it follows that these coefficients are not exactly zero--as 
they should be in the exact solution--being instead of order e x p ( - 1 / M )  
(or smaller), which is a transcendentally small number for M ~  1. 5 Con- 
sidering that the inaccuracy of ignoring the finite width of the light-gas 
shock is far greater than exp( -1 /M) ,  an attempt of a more accurate 
description of the problem would make little physical sense. Therefore, with 
errors O [ e x p ( - I / M ) ] ,  the solution for x > 0 can be written as (dropping 
the superscript + )  

f =  ~ a,,mGnm(r Lm(~ 2) exp( - t / z  - Yn~ Y) 
n m  

(43) 

s The dominant term in the coefficient bg 0 given by Eq. (41) with 7& is the exponential term, 
which is not unity as in the case of a~ ,  because 7 ~ =  - 2 V  instead of 7 ~ = 0  [so that 
a0+ 0 = O(1)]. Therefore, bffo,~expE-2VVo- V2(1 - 0-1)] ,  where 0 is always larger than one. 
V0 is of order M -1/2, and V, except for strong shocks, is of the same order (but for strong 
shocks, V 0 is much larger than M-1/2). Then, b~o=O[exp(-1/M)]. Numerical com- 
putations show that b~+~, decreases very rapidly as n or m increase, so that all the coefficients 
b+,,, are, at most, O [ e x p ( - 1 / M ) J .  Indeed, the same numerical computations show that the 
largest coefficient, that is, b~0, is much smaller than e x p ( - l / M ) .  Thus, with M1 = 1.5, for 
He-Ar [ e x p ( - 1 / M ) = 4 . 5 4 x 1 0 - 5 ] ,  b f fo= l . 12x l0  -v and for He-Xe [ e x p ( - 1 / M ) =  
9.78 x 10-15], b~o= 1.3 x 10 22. 
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with the coefficients anm given by Eq. (41). [Obviously, these coefficients 
a,,, are identical to those obtained from Eq. (31) by letting b o. =0; also, 
the coefficient aoo given by Eq. (41) coincides with that of Eq. (27)._] For 
x < 0 the solution is the Maxwellian distribution (40), which, in terms of 
and t/, reads 

fo = npo(mp/2rckTo) 3/2 exp[ - 0(4 - Vo) 2 - 0r/2 ] (44) 

where, for convenience, V o has been redefined as 

V o = Uo(mp/ZkT)1/2 (45) 

[The parameter Vo used in Eqs. (41) and (42) is also that defined by 
Eq. (45).] 

3. R E S U L T S  

Once the distribution function f is known, 
moments is straightforward. Defining 

np ~ f f d3u (46) 

npUp =- f uf d3u (47) 

Pp = mp I (u - Up)(u - Up) f d3u (48) 

Tp =- Pp/npk (49) 

Qp = rnp I (u - Up)(U - Up)(U - Up) f d3u (50) 

d,,,, = (an,~/npo)( 27ck T/mp) 3/2 (51) 

and making use of the orthogonality properties described in the Appendix, 
we obtain the following expressions for the dimensionless density, mean 
velocity, temperature tensor, and heat flux tensor: 

Np = np/npo = ~ d~o( -7,o)" exp( -7,0 Y) (52) 
n = O  

v ~ -  u , x ( m d 2 k r )  1/2 = Vo/N~ (53) 

T e L  I - Ppx~/n~ To 

(20/Np) {doo(V2+ 1/2) 

+ ~ [a.o(-7.ol"exp(--7.oYl(l /Z-n/7~o)]-  V~o/Np} (54) 
J T = l  

the evaluation of its 
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Tp:_ - Ppyy/npk To 

= Pp~/npkTo 

{ d o o -  do1 e x p ( - 7 o l  Y) (O/Up) 

+ ~ [d,,o(-7.o)'exp(-7.oy)-d,,l(-Y,,1)'~exp(-Y,,lY)]} 
I I =  1 

Q ~  - Q,.~.~x/u~xP~xx 

{doo( V 2 + 3/2) V (2O/Vo T~ll) 

- 2 Edo0(-~.0)" exp(-~ooy)(2n/~0)lt- 3 -  20~/V.,,U~ 
n = l  3 

911 

(55) 

(56) 

i 

""'.  , 

"'"... Up 

Tpll ~ ' - . . . .  V/Vo 

2"'"" ' !"" 

I 
5 10 

Y 

Fig. 1. Plots of Np, Up, TpH, and Tp• for He-Ar with Mj = 1.5. The horizontal straight lines 
are the pre- and post-shock values of these properties for the light gas (as explained in the 
text, the light-gas shock wave is a discontinuity occurring at y=0) .  The dotted lines 
correspond to the solution of the hypersonic approximation (60)-(63). 

822/48/3-4-35 
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Qp• = Qpxyy/Up~Ppyy 

= Qpxzz/Upxepzz 

= (O/VoTpa) {doo V 

- [ 2 d n l ( - ? n l )  e x p ( - v n l  y)/Tnl] - 1 (57) 
n = [  

All the remaining terms of Tp and Qp are equal to zero. 
These moments  o f f  for x > 0 are shown in Figs. 1 3 for H e - A r  and 

He-Xe  mixtures ( M =  0.10 and M =  0.031, respectively) with Mach  number  
M1 = 1.5. 

Some comments  on the numerical computa t ions  are worth ment ioning 
here. The convergence of the series (52)-(57) is rather slow (particularly 
near y = 0), the more so the larger the Mach  number.  Thus, for He-Xe,  to 
reach Np(y = 0) = 1 with an error  less than or equal than 10 4, 16 terms of 
the series (52) were needed for M~ = 1.5; 40 terms for MI  = 2; 141 terms for 
M1 = 3; etc. The results of Figs. 1-3 for M1 = 1.5 were calculated with a 
number  of terms in the series (52)-(57) such that  Np(y = 0) - 1 is less than 
10 -9  (of  course, double precision was used in the numerical computat ions) .  
For  moderately large values of M~, the use of logari thms was required in 

1.5 

1 

Tpll 

~ ' " 0 

0 5 10 15 

Y 

Fig. 2. Plots of Np, Tpll, and Tp• for He-Xe with MI = 1.5. The dotted lines correspond to 
the solution of the hypersonic approximation (60)-(63) [Tp• given by the hypersonic 
approximation is indistinguishable from Tp• given by Eq. (55)]. 
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. 0 2 5  

= 

H e - A r  

.05 - -  J J 

0 5 10 15 

Fig. 3. Heat flux QplJ [Eq. (56)] for He Xe and He Ar with MI = 1.5. 

order to avoid numerical overflows in the computer when evaluating the 
large-n terms in the series (52)-(57). To this end, it is preferable to com- 
pute the Hermite polynomials in terms of the Laguerre polynomials: (26) 

H2m(X ) = ( - 1) m 22"m!  L~n l/2)(x 2) 

H2m+l(X) = ( _ 1)-~ 22m + l rn!  xL  m(1/2) (X2), m=O, 1,2 .... 

(58) 

(59) 

As a comparison, Figs. 1 and 2 also show the results from the lowest 
order hypersonic approximation, ~23 25) in which Pp is neglected in the 
momentum conservation equation and Qp is ignored in the equation for 
the temperature tensor. Within these assumptions, Np, Up, Tplm, and Tpa 
obey the equations 

G G = V o  

dUfdy = V/Up- 1 

aG~r/dy = 2(O - G ,  V/G) /G  

dTpz/dy = 2(0 - Tp• )/Up 

(60) 

(61) 

(62) 

(63) 

with the boundary conditions at y = 0: Np = 1, Up = Vo = M~(7/2MO) 1/2, 
Tpl m = Tp~ = 1. Obviously, the agreement between these hypersonic results 
and those of Eqs. (52) (55) is much better for He-Xe than for He-Ar, since 
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! 

2 4 6 

Fig. 4. Section rt=0 of the distribution function given by Eq.(43) [divided by 
neo(2~kT/mp) -3/2] for He-Ar (at y = 3) and He-Xe (at y = 6) with MI = 1.5. The dotted lines 
correspond to the Gaussian distribution (64). 

the hypersonic approximation is the better, the smaller the mass ratio M is. 
As shown in Ref. 25, the errors of the results given by Eqs. (60)-(63) (the 
lowest order of the hypersonic expansion) are O(M), while the errors of the 
solution (52)-(57) are by far much smaller [of  order e x p ( -  l /M)] .  

Finally, the distribution function (43) [after making it dimensionless 
with npo(2~kT/mp) -3/2 and evaluated at ~/= 0] is shown in Fig. 4 for the 
same cases as in Figs. 1-3. In addition, the same figure contains the 
Gaussian distribution 

fG 3/2 1/2 =(NpO /Tpl I Tp~)exp{-O[(~-U,)2/Tpll+rl2/Tpi]} (64) 

with Np, Up, Tpti, and Tp~ given by the hypersonic approximation 
(60)-(63). As shown in Ref. 25, this Gaussian distribution is the lowest 
order solution of a hypersonic expansion of the FP equation. Notice that 
the heat fluxes (Fig. 3) are very small, but they are not exactly zero as 
would correspond to a Gaussian distribution. The values of y for the dis- 
tribution functions plotted in Fig. 4 have been chosen as y = 3 (He-Ar)  and 
y = 6 (He-J~e), where, approximately, the parallel temperature Tpl I reaches 
a maximum so that the conditions are far removed from equilibrium and 
the FP and the hypersonic solutions differ most (see Figs. 1 and 2). 
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A P P E N D I X .  O R T H O G O N A L I T Y  P R O P E R T I E S  
A N D  O T H E R  R E L A T I O N S  

The functions G+m and G o+ [Eqs. (29)-(30)] satisfy the ordinary 
differential equations 

d[-exp(~ - V) 2 dG+m/d~]/d~ + 2(~+m ~ + 1 - 2m) exp(~ - V) 2 G+m = 0 ( a l )  

and similarly for G~ with Vo and o+ 7nm" Hence, the orthogonality properties 
a r e  

f + ~ d ~  ~G~mG+meXp(~-V)2=O,  n C n '  (A2) if 

with identical expression for G ~ where V is substituted by V0. For  n = n' 
the value of the integral (A2) is 

n! 2~1/z( V+ ~+m) exp [(7+m)Z/2 ] 

Since G~o = exp[ - (4 - V)2], we have 

f+~176162 ~G~=O,  n # O  
--oo (A3) 

= ~ l / 2 V ,  n = 0  

For any value of the integers n and m, since (3~ 

f +~ dx e x p ( - x  2) Hm(x + y)  H~(x + z) 
--oo 

= ~ m! ,,n n--m--(n-- Z Z L m m)(--2yz), m<~n (A4) 

where (,, m) L m (X) are Laguerre polynomials, one obtains, on using L~a)(x) = 
- x  + a + 1 and Eq. (20), 

= m ( -  ~-~) , n r  
co (A5) 

= X/-~( V +  7~m/2), n = 0 

and 

f + a o  + n 

d e  - - (A6) 
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Equations equivalent to (AS) and (A6) would apply to G~ after sub- 
stituting ~+,~ and V by o+ 7.m and V o. 

The orthogonality properties of the Laguerre polynomials can be 
written as (26) 

foV~ Lm,(X)exp(-x)=O, mvam' 

-~ 1, m = m '  

(A7) 

Other integrals used to evaluate the coefficients anm are  (3~ 

min(n,m) 

k=0 

fo +~ dx exp(-  0x) Lm(x) = [(0 - 1)/O]m/O (A9) 
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